Curriculum for Tissue Engineering Program (PhD)

Core courses: 24 Elective Courses: 6

Thesis: 20 Total: 50

Table : A

Compensatory courses

Code	Courses	C	redits		I	Hours	Prerequisite	
	333.000	Theoretical	Practical	Total	Theoretical	Practical	Total	1 2 2 3 4 4 1 5 1 5 6
01	Medical Information systems	0.5	0.5	1	9	17	26	-
02	General Anatomy and Embryology	1	0.5	1.5	17	17	34	-
03	Histology	1	0.5	1.5	17	17	34	-
04	Cell Physiology	2	-	2	34	-	34	-
05	General Pathology	2	-	2	34	-	34	-
06	General Pharmacology	2	-	2	34	-	34	-
07	Fundamentals of Immunology	2	-	2	34	-	34	-
08	Cellular and Molecular Biology	2	-	2	34	-	34	-
09	Statistics and Research Methods	2	-	2	34	-	34	-
10	Genetics	1	-	1	17	-	17	-
11	Biomechanics	2	-	2	34	-	34	-

12	Fundamentals of Materials Sciences	2	-	2	34	-	34	-
13	Fundamentals of Biochemistry	2	-	2	34	-	34	-
14	Fundamentals of Biophysics	2	-	2	34	-	34	-
	Total				25			

According to the department schedule and by the approval of post-graduate education council, Ph.D. students are due to take a maximum of 16 credits from the aforementioned courses (Table A).

Table: B
Core courses

	Courses	(Credits				Prerequisite	
		Theoretical	Practical	Total	Theoretical	Practical	Total	
15	Principals of Tissue Engineering	2	0.5	2.5	34	17	51	02, 03, 04, 05, 06, 07
16	Care and Use of Laboratory Animals	1	1	2	17	34	51	-
17	Cell Culture	2	1	3	34	34	68	03
18	Histological Study Methods	1	1	2	17	34	51	-
19	Bioinformatics, Research Methods,	1.5	2	3.5	26	68	94	08, 09

	Clinical Trials									
20	Mechanisms of Tissues and Organs Repair	2	0.5	2.5	34	17	51	15		
21	Bio-scaffolds	2	1	3	34	34	68	-		
22	Graft Biology and Immunology	1.5	0.5	2	26	17	43	07		
23	Molecular Techniques and Advanced Cellular Signaling	2.5	1	3.5	43	34	77	08		
24	Thesis	20								
	Total		44							

Table : C
Elective courses

Code	Courses		Credits			Hours		Prerequisite
		Theoretical	Practical	Total	Theoretical	Practical	Total	
25	Cellular Bank	1.5	0.5	2	26	17	43	15, 20
26	Angiogenesis	1.5	0.5	2	26	17	43	04, 05, 06
27	Effective strategies for communicating with Policymakers and Investors	1.5	0.5	2	26	17	43	-

28	Ethics in Medical Education	2	-	2	34	-	34	-
29	Molecular Genetics	1.5	0.5	2	26	17	43	08, 10
30	Nanobiotechnology	2	-	2	34	-	34	-
31	Three Dimensional Cell Culture	1	1	2	17	34	51	17
	TOTAL	14						

After supervising professor's consent and approval of post-graduate education council, students are due to take 6 credits of the aforementioned courses that are relevant to the theme of their Ph.D. thesis (Table C).

Course & Lesson plan for the first semester

Course Plan

- 1. General Anatomy and Embryology
- 2. Histological Study Methods
- 3. Cell Culture
- 4. Fundamentals of Immunology
- 5. Fundamentals of Materials Sciences

Course & Lesson plan for the second semester

Course Plan

- 1. Principals of Tissue Engineering
- 2. Graft Biology and Immunology
- 3. Molecular Techniques and Advanced Cellular Signaling
- 4. Bio-scaffolds
- 5. Three Dimensional Cell Culture

Course & Lesson plan for the third semester

Course Plan

- 1. Mechanisms of Tissues and Organs Repair
- 2. Nanobiotechnology
- 3. Cellular Bank
- 4. Bioinformatics, Research Methods, Clinical Trials
- 5. Care and Use of Laboratory Animals

Curriculum for Tissue Engineering Program (PhD)

First semester

No	Course name		numbe unites		Туре	Description
		theo	prac	total		
1	Histological methods	1	1	2	Core	Introduction to cellular phenotype using immunochemistry and cell sorting
2	Cell Culture	2	1	3	Core	Introduction to cell culture, cell and tissue imaging and application of stem cells in tissue regeneration
3	Fundamentals of Immunology	2	-	2	Compensatory	Introduction to the immune system and its function
4	Fundamentals of Materials	2	-	2	Compensatory	Introduction to materials, their properties and biomedical applications
5	General Anatomy and Embryology	1	0.5	1.5	Compensatory	Introduction to the general human anatomy and the early stages of embryo development
	Total			10.5		

Second semester

No	Course name	The	numbe unites	er of	Type	Description
		theo	prac	total		
1	Principles of Tissue Engineering	2	0.5	2.5	Core	Advanced strategies in tissue engineering

2	Molecular techniques and advanced cell signaling	3	1	4	Core	Detailed knowledge of the regulatory mechanisms of cell and molecular techniques commonly used in medical research and gene therapy
3	Three Dimensional Cell Culture	1	1	2	Elective	principles of three dimensional cell culture
4	Scaffolds in Tissue engineering	2	1	3	Core	Introduction to material selection and methods of scaffold fabrication and characterization
5	Biology and immunology of transplantation	2	-	2	Core	Introduction to the patient's immune reactions after transplantation of tissue engineered construct.
	Total			13.5		

Third semester

No	Course name		numbe unites	er of	Туре	Description
1,0		theo	prac	total	1)10	2001,000
	Mechanisms of organs				Core	Understanding the mechanisms of regeneration in organs and tissue
1	repair	3	-	3		engineered constructs
	Bioinformatics, research					The use of online molecular databases, introduction to research
2	methods, clinical trial methods	1.5	2	3.5	Core	methodology and application of statistical softwares
3	Animal Models	1	1	2	Core	Handling animal models used in biomedical researches
4	Cell and tissue banks	1.5	0.5	2	Elective	Overview of cell-lines and maintenance procedures of cells and tissues
5	Nanobiotechnology	2	-	2	Elective	Introduction to nanobiotechnology concepts and techniques
	Total			12.5		